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Hyperelliptic Curves

A hyperelliptic curve of genus g over a finite field Fq is a
non-singular, irreducible equation of the form

C ∶ y2 + h(x)y = f (x)

where h, f ∈ Fq[x] satisfy certain conditions.
For example, h(x) = 0 if char(Fq) ≠ 2.
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Imaginary and Real Model

Hyperelliptic curves come in two models:

Imaginary Model

f monic and deg(f ) = 2g + 1,
deg(h) ≤ g if q even.

Real Model

If q odd: f monic and deg(f ) = 2g + 2,
If q even: h monic and deg(h) = g + 1,

f monic and deg(f ) ≤ 2g + 1, or
deg(f ) = 2g + 2, and sgn(f ) = e2 + e,(e ∈ F ∗q ).

The imaginary model has one point ∞ at infinity.
The real model has two points at infinity, ∞ and ∞̄.
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Divisors and Jacobian

A divisor D is a formal sum of points in C

D = ∑
P∈C

nPP , nP ∈ Z

where all nP = 0, except for finitely many.

The divisor class group or the Jacobian, Cl0(C), is defined to be
the quotient group of a certain subgroup of Div(C) modulo the
principal divisors.

Each class in the Jacobian has a representative called reduced
divisor.

Each reduced divisor can be represented by two polynomials (u, v),
namely the Mumford representation.
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Balanced Divisors

Definition: D∞ is a degree g effective divisor defined as below:
- If g is even then D∞ = g

2 (∞
+ +∞−).

- If g is odd then D∞ = g+1
2 ∞+ + g−1

2 ∞−.

Proposition: Let C be a real hyperelliptic curve and D ∈ Div0(C
then [D] has a unique representative in Cl0(C) of the form
[D0 −D∞], where D0 is an effective divisor of degree g whose
affine part is reduced.

Definition: Let D1 and D2 be two divisors. we say that the
numbers ω+ and ω− are counterweights for D1 and D2 if

D1 ≡ D2 + ω+∞+ + ω−∞−

we denote the set of such a pair of ω+ and ω− by ω(D1,D2).
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Arithmetic in Real model Using Balanced Divisors

Algorithm 1. Composition
Input: Semi-reduced affine divisors D1 = (u1, v1), and D2 = (u2, v2).
Output: A semi-reduced affine divisor D3 = (u, v) and a pair
(ω+, ω−) such that (ω+, ω−) ∈ ω(D1 +D2,D3).

Algorithm 2 Reduction
Input: A semi-reduced affine divisor D0 = (u0, v0) with d0 ≥ g + 2.
Output: A semi-reduced affine divisor D1 = (u1, v1), and a pair of
(ω+, ω−), such that d1 < d0 and (ω+, ω−) ∈ ω(D0,D1).
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Baby Step

Algorithm 3. Composition at Infinity and Reduction
Input: A semi-reduced affine divisor D0 = (u0, v0) of degree
d0 ≤ g + 1.
Output: A reduced affine divisor D1 = (u1, v1) and a pair of
integers (ω+, ω−) such that (ω+, ω−) ∈ ω(D0,D1).

v ′ ∶= H± + ((v0 −H±)mod u0).

u1 ∶= v ′2+hv ′−f
u0

made monic.

v1 ∶= −h − v ′ mod u1.
if H+ was used then
(ω+, ω−) ∶= (d0 − g − 1,g + 1 − d1).
else if H− was used then
(ω+, ω−) ∶= (g + 1 − d1,d0 − g − 1).
end if
return (u1, v1) and (ω+, ω−).

H+ = ⌊y⌋ and H− = −⌊y⌋ − h
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Explicit Formula

In this section we introduce a method named explicit formula for
real hyperelliptic curves of genus 2. Thus in the hyperelliptic curve

C ∶ y2 + h(x)y = f (x)

h(x) = h3x
3 + h2x

2 + h1x + h0 is a degree 3, and
f (x) = f6x

6 + f5x
5 + f4x

4 + f3x
3 + f2x

2 + f1x
1 + f0 is a degree 6

polynomial.

H+ = y3x
3 + y2x

2 + y1x + y0

By plug in H+) in the C we will have:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y23 + h3y3 = f6
y2 = (f5 − y3h2)/(2y3 + h3)
y1 = (f4 − y3h1 − y2(y2 + h))/(2y3 + h3)
y0 = (f3 − y3h0 − y2(2y1 + h1) − y1h2)/(2y3 + h3)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
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Explicit Formula for Baby step

We can show that v must be in the forms
v = −(y3 + h3)x3 + −(y2 + h2)x2 + v1x + v0 or
v = y3x

3 + y2x
2 + v1x + v0.

u = x2 + u1x + u0 or u = x + u0.

By plug in them in the algorithm 3 we can compute u′ and v ′ in
the worth case in 1 inversion, 6 Multiplication.
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Thank you for your attention!

Monireh Rezai Rad Balanced representation for divisors and Explicit Formula in Real Hyperelliptic Curves


	Hyperelliptic Curves
	Divisors

	Balanced Divisors
	Explicit Formula
	Explicit Formula:


