Balanced representation for divisors and Explicit Formula in Real Hyperelliptic Curves

Monireh Rezai Rad

University of Calgary

ECC 2012 Mexico, Queretaro October 29, 2012

[Divisors](#page-3-0)

Hyperelliptic Curves

A hyperelliptic curve of genus g over a finite field \mathbb{F}_q is a non-singular, irreducible equation of the form

$$
C: y^2 + h(x)y = f(x)
$$

where $h, f \in \mathbb{F}_q[x]$ satisfy certain conditions. For example, $h(x) = 0$ if $char(\mathbb{F}_q) \neq 2$.

Imaginary and Real Model

Hyperelliptic curves come in two models:

- **•** Imaginary Model
	- f monic and $deg(f) = 2g + 1$,
	- $deg(h) \leq g$ if q even.
- Real Model
	- If q odd: f monic and $deg(f) = 2g + 2$,
	- If q even: h monic and $deg(h) = g + 1$,
		- f monic and $deg(f) \leq 2g + 1$, or
		- $deg(f) = 2g + 2$, and $sgn(f) = e^2 + e$, $(e \in F_q^*)$.

The imaginary model has one point ∞ at infinity. The real model has two points at infinity, ∞ and $\bar{\infty}$.

Divisors and Jacobian

A divisor D is a formal sum of points in C

$$
D=\sum_{P\in C}n_P P\ ,\ n_P\in\mathbb{Z}
$$

where all $n_P = 0$, except for finitely many.

The divisor class group or the $\sf Jacobian, \; Cl^0(C),$ is defined to be the quotient group of a certain subgroup of $Div(C)$ modulo the principal divisors.

Each class in the Jacobian has a representative called reduced divisor.

Each reduced divisor can be represented by two polynomials (u, v) , namely the Mumford representation.

Balanced Divisors

Definition: D_{∞} is a degree g effective divisor defined as below:

- If g is even then $D_{\infty} = \frac{g}{2}$ $\frac{g}{2}(\infty^+ + \infty^-).$
- If g is odd then $D_{\infty} = \frac{g+1}{2} \infty^+ + \frac{g-1}{2} \infty^-$.

Proposition: Let C be a real hyperelliptic curve and $D \in Div^0(C)$ then $[D]$ has a unique representative in $\mathit{Cl}^{0}(\mathit{C})$ of the form $[D_0 - D_{\infty}]$, where D_0 is an effective divisor of degree g whose affine part is reduced.

Definition: Let D_1 and D_2 be two divisors. we say that the numbers ω^+ and ω^- are counterweights for D_1 and D_2 if

$$
D_1 \equiv D_2 + \omega^+ \infty^+ + \omega^- \infty^-
$$

we denote the set of such a pair of ω^+ and ω^- by $\omega(D_1,D_2)$.

Arithmetic in Real model Using Balanced Divisors

Algorithm 1. Composition

Input: Semi-reduced affine divisors $D_1 = (u_1, v_1)$, and $D_2 = (u_2, v_2)$. Output: A semi-reduced affine divisor $D_3 = (u, v)$ and a pair (ω^+, ω^-) such that $(\omega^+, \omega^-) \in \omega(D_1 + D_2, D_3)$.

Algorithm 2 Reduction

Input: A semi-reduced affine divisor $D_0 = (u_0, v_0)$ with $d_0 \ge g + 2$. Output: A semi-reduced affine divisor $D_1 = (u_1, v_1)$, and a pair of (ω^+, ω^-) , such that $d_1 < d_0$ and $(\omega^+, \omega^-) \in \omega(D_0, D_1)$.

Baby Step

Algorithm 3. Composition at Infinity and Reduction Input: A semi-reduced affine divisor $D_0 = (u_0, v_0)$ of degree $d_0 \leq g+1$. Output: A reduced affine divisor $D_1 = (u_1, v_1)$ and a pair of integers (ω^+, ω^-) such that $(\omega^+, \omega^-) \in \omega(D_0, D_1)$. $v' := H^{\pm} + ((v_0 - H^{\pm}) \text{mod } u_0).$ $u_1 := \frac{v'^2 + hv' - t}{u_0}$ $\frac{10V - t}{u_0}$ made monic. $v_1 := -h - v' \mod u_1$. if H^+ was used then $(\omega^+, \omega^-) \coloneqq (d_0 - g - 1, g + 1 - d_1).$ else if H^- was used then $(\omega^+, \omega^-) \coloneqq (g + 1 - d_1, d_0 - g - 1).$ end if return (u_1, v_1) and (ω^+, ω^-) . $H^+ = [y]$ and $H^- = -[y] - h$

[Explicit Formula:](#page-7-0)

Explicit Formula

In this section we introduce a method named explicit formula for real hyperelliptic curves of genus 2. Thus in the hyperelliptic curve

$$
C: y^2 + h(x)y = f(x)
$$

 $h(x) = h_3x^3 + h_2x^2 + h_1x + h_0$ is a degree 3, and $f(x) = f_6x^6 + f_5x^5 + f_4x^4 + f_3x^3 + f_2x^2 + f_1x^1 + f_0$ is a degree 6 polynomial.

$$
H^+ = y_3 x^3 + y_2 x^2 + y_1 x + y_0
$$

By plug in H^+) in the C we will have:

$$
\begin{cases}\ny_3^2 + h_3y_3 = f_6 \\
y_2 = (f_5 - y_3h_2)/(2y_3 + h_3) \\
y_1 = (f_4 - y_3h_1 - y_2(y_2 + h))/(2y_3 + h_3) \\
y_0 = (f_3 - y_3h_0 - y_2(2y_1 + h_1) - y_1h_2)/(2y_3 + h_3)\n\end{cases}
$$

[Explicit Formula:](#page-7-0)

Explicit Formula for Baby step

We can show that v must be in the forms
\n
$$
v = -(y_3 + h_3)x^3 + -(y_2 + h_2)x^2 + v_1x + v_0
$$
 or
\n
$$
v = y_3x^3 + y_2x^2 + v_1x + v_0.
$$

\n
$$
u = x^2 + u_1x + u_0
$$
 or $u = x + u_0$.

By plug in them in the algorithm 3 we can compute u' and v' in the worth case in 1 inversion, 6 Multiplication.

[Explicit Formula:](#page-7-0)

Thank you for your attention!